Live Bliksemontladingen

De teller in het icoon met het onweersbuitje geeft live het actuele aantal bliksemontladingen uit onze regio weer. De dekking ligt in een vierkant om Nederland en België, waardoor er ook data van rondom Parijs, op de Noordzee en uit een deel van Duitsland wordt weergegeven.

Ontladingen

De ontladingen kun je terugvinden op de Google Maps kaart onderaan de pagina. Deze worden nog niet live bijgewerkt, voor de meest actuele ontladingen ververs je de pagina. De iconen op de kaart lopen in kleur van Geel naar Rood, waarbij Geel een 'nieuwe' ontlading is en Rood een 'oude'.

Geluid

De teller maakt geluid als het aantal bliksemontladingen verhoogt. Dus, bij een update van 0 naar 1 hoor je geluid. Je kunt dit uitschakelen met het luidspreker icoontje in de balk hierboven.

Data © Blitzortung.org / Lightningmaps.org
nl
StormTrack Beta
Inloggen
Heb je nog geen account? Dan kun je er hier eentje aanmaken!
De Bilt

Geen onweer in de buurt
Nu Live

De kaart De Bilt - Bewolking
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:39

De kaart De Bilt - 6luik
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:39

De kaart T850 pluim De Bilt is bijgewerkt.

17 Aug 2019 14:00:39

De kaart Vlissingen - CAPE/Onweer
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:38

De kaart Vlissingen - Temperatuur
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:37

De kaart Twente - Sneeuwval
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:36

De kaart Twente - Neerslag
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:36

De kaart Schiphol - CAPE/Onweer
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:35

De kaart Schiphol - Windstoten
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:35

De kaart Schiphol - Temperatuur
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:34

De kaart Maastricht - Dauwpunt
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:34

De kaart Maastricht - Sneeuwval
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:33

De kaart Maastricht - Neerslag
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:33

De kaart Maastricht - Temperatuur
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:33

De kaart Leeuwarden - Windstoten
KNMI Expertpluim
is bijgewerkt.

17 Aug 2019 14:00:32
Actueel
1 / 4

Waarnemingentopic

Hoe is het weer bij jou?

Fotowedstrijd augustus 2019

Berichtgeving droogte

Lees snel de laatste info!

Zomerdiscussietopic

Wisselvallig

×
Kies een plaats
Beschikbare Plaatsen:
×
Welke meldingen wil je ontvangen?

Je kunt hieronder aangeven welke notificaties je wil ontvangen in 'Nu Live'. Standaard ontvang je alle notificaties, wil je een bepaald type melding niet langer ontvangen? Vink dan het vinkje uit. Je keuze wordt automatisch opgeslagen.

×
Nu Live
Check de nieuwste video's!

Neerslagradar

Meld het weer bij jou!


Zonnig

Licht bewolkt

Half bewolkt

Zwaar bewolkt

Lichte regen

Regen

Zware regen

Onweer

Lichte sneeuw

Sneeuw

Hagel

Mist

Dichte mist

Zeer dichte mist

Storm

IJzel
Naam:
<klik hier>

Plaats:
<klik hier>


Waarschuwingen KNMI

Momenteel online

Website: 277 bezoekers
Forum: 2797 bezoekers

Weerradars

KNMI Temperatuur
Weerkaart KNMI Temperatuur

De Bilt - 3luik
KNMI Expertpluim

Weerkaart De Bilt - 3luik<br />KNMI Expertpluim

KNMI klassieke pluim
Weerkaart KNMI klassieke pluim

Meteo encyclopedie: Wat betekent Exoplaneet?

Exoplaneet

zijn planeten die draaien om andere sterren dan de Zon. Het bestaan van deze planeten is voornamelijk afgeleid van indirecte waarnemingen en daarop gebaseerde berekeningen. Deze planeten werden voor het eerst ontdekt in de jaren 90, toen de technologie ver genoeg was gevorderd om telescopen te maken die hiervoor voldoende gevoelig waren. Er worden steeds meer exoplaneten ontdekt; op 10 juli 2015 stond de teller op 1932 exoplaneten. Op dezelfde datum waren er 1222 planetenstelsels ontdekt.[2] Tot dusver zijn er planetenstelsels gevonden met meerdere exoplaneten in een baan rond één of twee sterren (dubbelsterstelsel); er zijn ook stelsels met meer dan twee sterren gevonden met slechts één exoplaneet, zoals 16 Cygni.

Methodes

Het probleem met planeten rond andere sterren is dat het zeer zwakke lichtbronnen zijn. Ze stralen namelijk zelf geen licht uit, maar weerkaatsen slechts het licht van de ster. En aangezien de planeet meestal relatief dicht bij de ster staat, wordt de planeet door de ster overstraald. Daarom kunnen telescopen slechts planeten waarnemen in uitzonderlijke omstandigheden, bijvoorbeeld als de planeet bijzonder groot is of nog zeer jong (omdat ze dan nog zeer heet is, kan ze waargenomen worden door haar sterke infrarode straling). Een andere mogelijkheid is wanneer er geen of slechts een zwakke lichtbron in de buurt is, bijvoorbeeld wanneer een planeet cirkelt rondom een bruine dwerg.

Dit laatste is het geval voor de eerste rechtstreeks waargenomen planeet 2M1207 b op 200 lichtjaren van de aarde in het sterrenbeeld Hydra (Waterslang). Haar ontdekking werd aangekondigd op 10 september 2004, waarna een tijdlang controverse volgde of men wel een planeet, dan wel een bruine dwerg had gefotografeerd. In april 2005 bevestigde de ESO aan de hand van nieuwe foto's van de Very Large Telescope, dat het wel degelijk om een zeer grote planeet ging (vijf keer de massa van Jupiter), die op een afstand van 55 astronomische eenheden draait rondom zijn "moederster", in dit geval een bruine dwerg en dus eigenlijk geen echte ster.

Maar de aanwezigheid van een planeet kan op andere manieren worden aangetoond:

Dopplerverschuiving of astrometrie: meet variaties in de beweging van een ster. De planeet beweegt om de ster door de zwaartekracht. Deze zorgt ervoor dat de ster zelf ook in de richting van de planeet wordt getrokken. De twee roteren rond een gemeenschappelijk zwaartepunt. Als de planeet voldoende zwaar is, of de ster voldoende licht, kan de beweging van de ster vanaf de aarde gemeten worden. Dit is echter alleen mogelijk als de ster in onze richting beweegt. Alleen de radiële snelheid wordt gemeten. Bewegingen loodrecht op deze richting worden niet waargenomen met het dopplereffect. Uit de grootte en het tijdsverloop van de metingen bepaalt men de baan en de massa van de exoplaneet.
Transitmethode: deze techniek is gebaseerd op het feit dat de planeet een deel van de ster afdekt als hij in zijn omloopbaan tussen ons en de ster komt te staan. Op deze manier verandert de lichtintensiteit van de ster op een specifieke manier en kan men ook een berekening maken van de omloopsnelheid van de planeet. Op 5 november 1999 werd bij de ster HD 209458 in het sterrenbeeld Pegasus een planeet ontdekt. Deze planeet, HD 209458b werd korte tijd later ook als eerste exoplaneet met deze zogenaamde transitmethode gedetecteerd.
Pulsar timing: pulsars geven flitsen (pulsen) radiostraling met ongeveer regelmatige tussentijden. Uit afwijkingen kan de storende invloed van een exoplaneet die rond de pulsar beweegt blijken.
Zwaartekrachtlens: er kan ook gebruik worden gemaakt van het microlens-effect dat veroorzaakt wordt door een ster met een planeet, die voor een achterliggende ster schuiven. De zwaartekracht van het stelsel buigt het licht van de ster op de achtergrond af en veroorzaakt kortstondig een uitstulpsel op het lens-effect. Op deze manier heeft men al exoplaneten ontdekt van slechts 5 tot 15 aardmassa's. Op 22 juni 2003 werd OGLE235-MOA53b de eerste exoplaneet die ontdekt werd via microlensing.
Stofschijven rond sterren: waarneming van het stof dat zich in een draaiende schijf rond een ster verzamelt kan leiden tot de ontdekking van een exoplaneet. Het stof straalt in het infrarood. Zo wordt een exoplaneet van epsilon Eridani vermoed.
Eclipserende dubbelsterren: om elkaar draaiende sterren die elkaar verduisteren, van ons uit gezien, kunnen in hun lichtkrommes de aanwezigheid van een planeet of planeten verraden.

Voor het gehele artikelnl.wikipedia.org/wiki/Exoplaneet

Bron: wikipedia – de vrije encyclopedie

« Encyclopedie overzicht

Grafiek van ontdekkingen per jaar. De kleuren vertegenwoordigen de methodes. Grafiek van ontdekkingen per jaar. De kleuren vertegenwoordigen de methodes. Animatie van een zware exoplaneet rond een ster. Alleen het deel van de exoplaneet aan de sterzijde wordt verlicht. De beweging van de planeet brengt via zijn zwaartekracht de ster in beweging. Beide bewegen om hun gemeenschappelijk zwaartepunt (massacent Animatie van een zware exoplaneet rond een ster. Alleen het deel van de exoplaneet aan de sterzijde wordt verlicht. De beweging van de planeet brengt via zijn zwaartekracht de ster in beweging. Beide bewegen om hun gemeenschappelijk zwaartepunt (massacent